
This lemma was used in my old clunky proof of chi squared tests from level 6 so it has be moved to 
this section. 

We need to define some theory to state the theorem. 

Say I have a vector of random variables 𝑋1, 𝑋2, …𝑋𝑘 . These do not have to be independent nor 
identically distributed. Then the covariance matrix, typically denoted by Σ is such that the entry in the 
i’th row and j’th column is equal to 𝐸((𝑋𝑖 − 𝐸(𝑋𝑖))(𝑋𝑗 − 𝐸(𝑋𝑗)) which we showed at the beginning of 
Level 6 stats equals 𝐸(𝑥𝑖𝑥𝑗) − 𝐸(𝑥𝑖)𝐸(𝑥𝑗). First, we know that Σ is symmetric. Also, by definition, the 
n’th diagonal entry of Σ is given by 𝑉𝑎𝑟(𝑋𝑛), and the off diagonal entries, say in the i’th row and j’th 
volumn, are given by 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗). Alternatively, you can think of the covariance matrix of a random 

vector Z as 𝐸((𝑍 − 𝐸(𝑍))(𝑍 − 𝐸(𝑍))𝑇) as this is equivalent. We will consider the chi squared table to 
be a random vector. 

The distribution with this property (ie that all dot products make normal distributions) with covariance 
matrix Σ is unique because any such distribution has the same characteristic function. To prove this, 
note that for a random vector x, 𝜙𝑎.𝑥(𝑢) = 𝐸(𝑒𝑖𝑢(𝑎.𝑥)) = 𝜙𝑥(𝑢𝑎). The  characteristic function of a 

standard normal is 𝑒
−𝑡2

2  as we showed in the CLT proof, and now I will derive the characteristic 
function of a normal with mean µ and variance 𝜎2. We need to evaluate the following integral: 
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But this is 𝜙𝑎.𝑥(𝑢) if µ and 𝜎2 are the mean and variance of the variable a.x, so since 𝜙𝑎.𝑥(𝑢) =
𝜙𝑥(𝑢𝑎), this defines the characteristic function of X if X is distributed normally, as required. 

Lemma: Covariance matricies of independent vectors ad d like regular variances. 

Proof: 

 

 



Where this last part is for the same reason as in the univariate case. 

Theorem: Take n samples of a random vector X. As n goes to infinity, √𝑛(𝑋̅ − 𝑝) converges in 
distribution to a normal distribution with mean 0 and finite covariance Σ. Furthermore assume that the 
distribution of X is at worst a mix of discrete and continuous parts since the supporting parts from this 
website assume this. Note that here, 𝑋̅ is the component-wise sample mean of n random vectors, and 
p is the vector with entries equal to the expected values of each of the components. 

Recommended levels for proof: 6 (Normal central limit theorem is used) and also the proof of the 
Cramer Wold theorem from the misc results section. Once we have these, the result is quite easy. 

If we have a random vector X, then we first shift X so that its mean is 0, then we have the following 
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Also we have finite covariance by assumption so Var(a.x) is finite. 

Let’s unpack what I mean by Σ𝑖𝑗. Σ is the covariance matrix of X, and this is the i’th row j’th column 
entry of the covariance matrix, which equals 𝐸(𝑥𝑖𝑥𝑗) since the 𝐸(𝑥𝑖)𝐸(𝑥𝑗) part of the covariance 

matrix terms is 0 by assumption. It is also the case that ∑ ∑ 𝑎𝑖
𝑘
𝑗=1 𝑎𝑗Σ𝑖𝑗

𝑘
𝑖=1  is the exact sum you would 

get if you compute the product 𝐴𝑇Σ𝐴, which means 𝑉𝑎𝑟(𝐴. 𝑥) = 𝐴𝑇Σ𝐴. Therefore, the distribution of 

√𝑛(𝑋̅ − 𝑝) is the distribution of √𝑛(𝑌̅) where Y is just X but scaled to have a mean of 0. √𝑛(𝑎. 𝑌̅) has a 

variance of 𝐴𝑇Σ𝐴 always since the taking the mean and the multiplying by √𝑛 cancel the effect of 
eachother, and by the normal central limit theorem as n increases this approaches a normal 

distribution. Since this in fact holds always for all vectors a, √𝑛(𝑌̅) converges to a multivariate normal 
by the cramer wold theorem, as a multivariate normal is defined as a distribution that is normally 
distributed if you take a dot product with that random vector and a fixed vector, and this is unique. So 
done. 

Example of an application: We give an alternative proof from the one in level 6 that chi squared tests 
work in the simple case with no additional constraints other than the total. 

Recommended levels for this: 7 (Just 6 + the projection matrix formula which we cover in the level 7 
vectors and matrices course) 

We will also show what I showed above more generally: Suppose A is not just a kx1 vector but a kxr 
matrix and we want to find the covariance matrix of Ax: 

𝐶𝑜𝑣(𝐴𝑥) = 𝐸 ((𝐴𝑥 − 𝐸(𝐴𝑥))(𝐴𝑥 − 𝐸(𝐴𝑥))
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Notation: k is the number of cells in the chi squared table, and therefore the number of dimensions of 
the random vector in question. 𝑝𝑘 is the probability the k’th cell of this vector is activated on a single 
trial. 

The covariance matrix of this vector X will be denoted by Σ, which in it’s i’th row j’th column entry has 
𝐸(𝑋𝑖𝑋𝑗) − 𝐸(𝑋𝑖)𝐸(𝑋𝑗). If i and j are distinct, then this first term becomes 0 as at least one of 𝑋𝑖 and 𝑋𝑗 

is always 0, so we just have −𝑝𝑖𝑝𝑗. If i=j, then 𝑋𝑖𝑋𝑗 is 1 with probability 𝑝𝑖, and 𝐸(𝑋𝑖)𝐸(𝑋𝑗) is 𝑝𝑖
2, so we 

get 𝑝𝑖(1 − 𝑝𝑖) on the diagonal entries. Therefore, 

Σ = (
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This is also the covariance matrix of √𝑛(𝑥̅ − 𝑝) because we get there by 1. Adding up everything 
(multiplies the covariance matrix by n), divide by n to get the mean (divides the covariance matrix by 

𝑛2), multiply by √𝑛 on the front (multiplies by n again), then subtract a constant vector p (does not do 
anything), so we’re back where we started. Now to prove the chi squared statistic I will prove that 

geometrically, the vector √𝑛
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pythagoras squaring its length gives the chi squared statistic: 𝑛 (𝑋̅−𝑝)
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approximately as a standard normal in the k-1 dimensional subspace it is constrained to given the 
constraint that 𝑋̅ − 𝑝 has components which sum to 0 because there were n trials and so 𝑋̅ has 

components that add up to 1 and p has components adding up to 1 trivially. Now notice that √𝑛
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actually means we divide each component by the square root of that corresponding p, so if we 
multiply each component by that square root again, then sum the components, we will get 0. Putting it 

another way, √𝑛
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 dot product with the vector with components √𝑝1, √𝑝2, … , √𝑝𝑘 is 0, so the 

constraint is that we are perpendicular to √𝑝1, √𝑝2, … , √𝑝𝑘. Therefore the projection matrix onto the 
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 because that is the standard formula for a projection matrix. The 

proof for this is in the technical results document. 

Now let D be the diagonal matrix with√𝑝1, √𝑝2, … , √𝑝𝑘  as its entries, then √𝑛
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since we know how pre-multiplying by a matrix affects the covariance, and because the transpose of a 

diagonal matrix equals itself, we have 𝐶𝑜𝑣 (√𝑛
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. This is indeed the projection matrix, and we will show that if the covariance matrix is a 

projection matrix, then the random vector behaves like a standard normal in the relevant subspace. 
This vector does indeed become normally distributed as n gets large because of the multivariate 



central limit theorem. Here is the proof of this: We know that if B is any k*m matrix with orthogonal 
columns spanning the plane in question and Z is a standard multivariate normal random vector, then 
𝐵𝑇𝑍~𝑁(0, 𝐵𝐵𝑇). But notice, 𝐵𝐵𝑇 is the projection matrix onto the space spanned by B’s columns, and 
it is the covariance matrix of Z after being projected. So the covariance matrix being a projection 
matrix makes the vector be the projected vector. 

As promised, I will now explain why it would have been ok if we had taken the negative square root. 
Essentially, everything we took the square root of we eventually took the square of again. 

So now we know that the vector √𝑛
𝑋̅−𝑝

√𝑝
, which is the chi squared statistic, is a k-1-dimensional 

normal, so the square of its length, which is equal to the chi squared is 𝜒𝑘−1
2 . 


